Distributed Optimisation Algorithm for Demand Side Management in a Grid-Connected Smart Microgrid

نویسندگان

  • Omowunmi Mary Longe
  • Khmaies Ouahada
  • Suvendi Rimer
  • Hendrik C. Ferreira
  • A. J. Han Vinck
چکیده

The contributions of Distributed Energy Generation (DEG) and Distributed Energy Storage (DES) for Demand Side Management (DSM) purposes in a smart macrogrid or microgrid cannot be over-emphasised. However, standalone DEG and DES can lead to under-utilisation of energy generation by consumers and financial investments; in grid-connection mode, though, DEG and DES can offer arbitrage opportunities for consumers and utility provider(s). A grid-connected smart microgrid comprising heterogeneous (active and passive) smart consumers, electric vehicles and a large-scale centralised energy storage is considered in this paper. Efficient energy management by each smart entity is carried out by the proposed Microgrid Energy Management Distributed Optimisation Algorithm (MEM-DOA) installed distributively within the network according to consumer type. Each smart consumer optimises its energy consumption and trading for comfort (demand satisfaction) and profit. The proposed model was observed to yield better consumer satisfaction, higher financial savings, and reduced Peak-to-Average-Ratio (PAR) demand on the utility grid. Other associated benefits of the model include reduced investment on peaker plants, grid reliability and environmental benefits. The MEM-DOA also offered participating smart consumers energy and tariff incentives so that passive smart consumers do not benefit more than active smart consumers, as was the case with some previous energy management algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Operation Management of Grid-connected Microgrid Using Multi-Objective Group Search Optimization Algorithm

Utilizing distributed generations (DGs) near load points has introduced the concept of microgrid. However, stochastic nature of wind and solar power generation as well as electricity load makes it necessary to utilize an energy management system (EMS) to manage hourly power of microgrid and optimally supply the demand. As a result, this paper utilizes demand response program (DRP) and battery t...

متن کامل

A two-step approach to energy management in smart micro-grids aimed at improving social welfare levels and the demand side management effect

Demand-side management is one of the ways to create interaction between the microgrid and increase consumer participation in management schemes. Different algorithms and strategies have been used to execute consumption management programs that often covering a limited number of loads in several specific types. In this paper, first, the load shift method as an optimization problem to reduce syst...

متن کامل

Optimal Economic Operation and Battery Sizing for Microgrid Energy Management Systems Considering Demand Response

Microgrids (MGs) contain a diverse mix of energy resources to provide safe and secure power to the consumers. Batteries are utilized in MGs for further energy security assurance as well as cost minimization. In this paper, an efficient approach is introduced for simultaneous energy management and optimal battery sizing to accomplish economic MG operation. Also, demand response programs are empl...

متن کامل

Integrated Scheduling of Electric Vehicles and Demand Response Programs in a Smart Microgrid

Microgrid (MG) is one of the important blocks in the future smart distribution systems. The scheduling pattern of MGs affects distribution system operation. Also, the optimal scheduling of MGs will be result in reliable and economical operation of distribution system. In this paper, an operational planning model of a MG which considers multiple demand response (DR) programs is proposed. In the ...

متن کامل

Decentralized Control Strategy for Optimal Energy Management in Grid-Connected and Islanded DC Microgrids

This paper proposes a decentralized control technique to minimize the total operation cost of a DC microgrid in both grid-connected and islanded modes. In this study, a cost-based droop control scheme based on the hourly bids of all participant distributed generators (DGs) and the hourly energy price of the utility is presented. An economic power sharing technique among various types of DG unit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017